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Abstract

Pose estimation is a crucial task in computer vision, en-
abling tracking and manipulating objects in images or videos.
While several datasets exist for pose estimation, there is a
lack of large-scale datasets specifically focusing on cluttered
scenes with occlusions. This limitation is a bottleneck in
the development and evaluation of pose estimation meth-
ods, particularly toward the goal of real-world application
in environments where occlusions are common. Address-
ing this, we introduce PACE (Pose Annotations in Cluttered
Environments), a large-scale benchmark designed to ad-
vance the development and evaluation of pose estimation
methods in cluttered scenarios. PACE encompasses 54,945
frames with 257,673 annotations across 300 videos, cover-
ing 576 objects from 44 categories and featuring a mix of
rigid and articulated items in cluttered scenes. To annotate
the real-world data efficiently, we developed an innovative
annotation system utilizing a calibrated 3-camera setup. We
test state-of-the-art algorithms in PACE along two tracks:
pose estimation, and object pose tracking, revealing the
benchmark’s challenges and research opportunities. We plan
to release PACE as a public evaluation benchmark, along
the annotations tools we developed, to stimulate further ad-
vancements in the field. Our code and data is available on
https://github.com/qq456cvb/PACE.

1. Introduction
The field of 3D object pose estimation is integral to a myriad
of applications, particularly within robotic manipulation.
Recent advancements in both instance and category-level
pose estimation have been significant, bolstered by deep
learning approaches, and perhaps more importantly, data.

PoseCNN [45] advanced pose estimation into the deep
learning era, and simultaneously introduced the influential
YCB-Video dataset. This benchmark has catalyzed method-
ological development and offered a consistent evaluation
platform. Additionally, the Benchmark for 6D Object Pose
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Bottle Bowl Camera Can Laptop Mug

SAR-Net [24] 54.0 66.0 0.4 62.2 50.0 21.2
HS-Pose [47] 51.1 94.7 3.9 75.4 85.2 26.4

Table 1. Performance saturation on current benchmarks is evident
with AP@5◦5cm results, HS-Pose’s performance is nearly saturated
on bowl and laptop, making one curious how it performs in general.

Estimation (BOP) challenges have consolidated datasets and
refined evaluation metrics for instance-level pose estimation.

In parallel, the NOCS [41] dataset has addressed category-
level pose estimation, albeit with a smaller real-world dataset
for validation and testing. Despite these strides, the field
grapples with a fundamental challenge: existing evalua-
tion datasets are too constrained to thoroughly benchmark
the capabilities of pose estimation algorithms. The NOCS
REAL275 dataset, for instance, spans only six categories
and includes a mere 18 videos. This limitation has led to a
performance saturation on current benchmarks, as depicted
in Table 1, rendering it ambiguous whether methods are
getting tuned to the dataset or improving in general.

In this work, we introduce PACE (Common Objects with
Pose Annotations), a benchmark for pose estimation, and
present a comprehensive study evaluating a wide range of
pose estimation and tracking methods. Our contributions are
threefold:
• The PACE dataset: This dataset includes 576 objects

across 44 categories, captured in 300 video clips within
diverse scenes. With an average of 183 frames per clip,
the dataset encompasses 54,945 frames and 257,673 anno-
tations, providing a large-scale benchmark for pose esti-
mation.

• Our evaluation study: To the best of our knowledge, we are
the first to analyze and report the performance of state-of-
the-art pose estimation methods in a large-scale cluttered
setting. These results provide valuable insights that the
scalability and generalizability of state-of-the-art methods,
making it clear that they are far from reliable in general.

• Our annotation pipeline: We will open-source our anno-
tation pipeline, which harnesses a calibrated 3-camera
system, enhancing the precision and scalability of anno-

https://github.com/qq456cvb/PACE


Figure 1. Sample images from the PACE dataset showcasing the diversity of objects, complexity of scenes, and the range of occlusions.
These examples highlight the dataset’s real-world applicability for robust pose estimation benchmarks.

tating poses in real data. This tool significantly mitigates
human error and reduces the effort required for annotat-
ing 3D poses, providing a solution to one of the major
bottlenecks in pose dataset creation.
Overall, our work aims to propel the development of more

robust and generalizable pose estimation techniques, thereby
facilitating progress towards successful pose estimation in
the real world.

2. Related Works
The field of 3D object pose estimation has seen substantial
progress over the past few years. This progress has been
facilitated by the introduction of standardized datasets and
the development of innovative algorithms.

2.1. Object Pose Datasets

Instance-Level Pose Datasets YCB-Video dataset [45] is
a comprehensive resource for 6D object pose estimation, con-
taining a large number of video frames with accurate pose an-
notations for 21 objects. LINEMOD-Occluded dataset [3] of-
fers a challenging setting for pose estimation with piled mul-
tiple objects in occluded scenes. NAVI dataset [16] presents
casually captured images of objects with high-quality 3D
scans and precise 2D-3D alignments for advanced 3D recon-
struction tasks.

Category-Level Pose Datasets CO3D [32] offers 1.5 mil-
lion frames from nearly 19,000 videos across 50 MS-COCO
categories for category-specific 3D reconstruction and view
synthesis. The Scan2CAD [2] dataset aligns 14225 CAD
models from ShapeNet to 1506 ScanNet scans, promoting
CAD model alignment in RGB-D scans. Pix3D [36] is a
benchmark with image-shape pairs and pixel-level 2D-3D
alignment, aiding in shape reconstruction and retrieval. The
HOI-4D dataset [29], with 2.4M RGB-D frames over 4000
sequences, enables research in category-level human-object

interaction. HANDAL [11] focuses on pose estimation and
affordance prediction for robotics-ready manipulable objects.
A comparative comparison with other datasets is in Table 2.

2.2. Pose Estimation Methods

Instance-level Pose Estimation PPF (Point Pair Fea-
tures) [8] set the pre-deep learning standard for instance-level
pose estimation, utilizing local geometric features from point
clouds. The deep learning era began with PoseCNN [45],
leading to several advanced methods. DeepIM [23] ap-
proached pose estimation as an image matching task, it-
eratively refining estimations. DenseFusion [38] combined
global and local features for pose estimation in cluttered
scenes, while CosyPose [19] integrated a global refinement
strategy in its end-to-end pipeline. SurfEmb [12] lever-
aged surface embeddings for correspondence matching, and
GDRNPP [40] employed geometry-guided regression for
enhanced prediction.

Category-level Pose Estimation Category-level pose es-
timation extends the challenge to generic object categories.
NOCS [41] introduced a unified coordinate space for all
objects, predicting object NOCS maps from RGB images.
SGPA [4] aims to adapt the structure-guided prior in the pose
estimation process, while SAR-Net [24] using shape align-
ment and symmetric correspondence to estimate a coarse 3D
object shape and facilitate object center and size estimation.
Recently, HS-Pose [47] proposes a network structure with an
HS-layer that extends 3D graph convolution to extract hybrid
scope latent features from point clouds for category-level
object pose estimation.

2.3. Pose Tracking Methods

Instance-level Pose Tracking Methods like RBOT [37] use
RGB data and 3D models to track multiple objects, employ-
ing color histograms in their cost function. PoseRBPF [5]
separates rotation and translation, using an autoencoder for



Modality Cat. Obj. Vid. Img. Anno. CAD Dyn. Occ. Marker-free Artic. Piled

YCB-Video [45] RGBD 1 21 12 20K 99K ✓ ✗ ✓ ✓ ✗ ✓
LINEMOD-O [3] RGBD 1 8 1 1.2K 9.2K ✓ ✗ ✓ ✗ ✗ ✓
NAVI [16] RGBD 1 36 324 10K 10k ✓ ✗ ✗ ✓ ✗ ✗

NOCS-REAL275 [41] RGBD 6 42 18 8K ✓ ✗ ✓ ✗ ✗ ✗
Wild6D [46] RGBD 5 1722 5166 1.1M 1.1M ✗ ✗ ✗ ✓ ✗ ✗
Objectron [1] RGB 9 17k 14k 4M 4M ✗ ✗ ✗ ✓ ✗ ✗
CO3D [32] RGB 50 19K 19K 1.5M 1.5M ✓ ✗ ✗ ✓ ✗ ✗
Scan2CAD [2] RGBD 9 3K 1506 - 14K ✓ ✗ ✓ ✓ ✗ ✗
Pix3D [36] RGBD 9 395 - 10K 10K ✓ ✗ ✗ ✓ ✗ ✗
HOI-4D [29] RGBD 16 800 4K 2.4M - ✓ ✓ ✓ ✓ ✓ ✗
HANDAL [11] RGB 17 212 2K 308K 308K ✓ ✓ ✓ ✓ ✗ ✗
PACE (Ours) RGBD 44 576 300 55K 258K ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Comparison of object pose datasets. From left to right, the table captures the input modality, number of categories, number of
instances, number of videos, number of images, number of total annotations, whether 3D CAD models are provided, whether videos include
static and/or dynamic moving objects, whether objects are occluded in some frames, whether images contain artificial markers, whether
poses for each part of articulated objects are provided, and whether multiple objects are piled in some frames. Compared with most previous
datasets, our dataset contains dynamic and articulated objects.

rotation feature embeddings. ICG [34] iteratively refines
pose using geometric cues and is effective for textureless
objects, with extensions incorporating visual data [35]. The
first deep learning tracker, D6DT [9], and se(3)-TrackNet
[43] predict frame-to-frame relative poses, using a render-
and-compare strategy.

Category-level Pose Tracking 6-PACK [39] marks the
onset of category-level tracking, using DenseFusion [38] fea-
tures and an attention mechanism for unsupervised keypoint
ordering and interframe motion via keypoint matching. Cen-
terPoseTrack [26] projects 2D keypoints from 3D bounding
box vertices, achieving RGB-based scale-invariant tracking.
BundleTrack [42] generalizes pose tracking without relying
on 3D models, instead using video segmentation and pose
graph optimization. CAPTRA [44] tracks 9DoF poses for
rigid and articulated objects, with subnetworks for rotation
regression and normalized coordinate prediction, facilitating
analytical 3D size and translation computation.

3. Construction of PACE
A key contribution of this work is the establishment of a
scalable and reliable annotation framework, enabling the
collection of large-scale and accurate pose annotations. An
overview of the pipeline is depicted in Figure 2.

3.1. Acquisition of 3D Common Object Scans

We begin by digitizing an extensive collection of common-
place objects. These items are categorized into 44 distinct
classes, as represented in Figure 3.

The Einscan Pro 2X is utilized for rapid scanning of all
objects, typically completing within 5 to 10 minutes per

object. To expedite this process, we employ a rotatable plat-
form to acquire multiple viewpoints of the objects. After
scanning, objects are manually aligned to a standard pose
within a uniform coordinate system. We center its axis-
aligned bounding box at the origin and align the bounding
box orientation along a common axis within the category.
We annotate rotational symmetries with the corresponding
rotation matrices. High-resolution meshes are then simpli-
fied to lower-resolution for smoother annotation workflows.

Articulated Objects Diverging from many prior pose
estimation datasets, our collection encompasses a very
wide set of objects, including articulated objects from the
AKB48 [27] dataset, namely: scissors, cutters, clips, and
boxes. We adopt the alignment methodology from the origi-
nal AKB48 dataset, without modification. These objects are
segmented into multiple parts with hierarchical relationships,
presenting a nuanced challenge for pose estimation.

3.2. RGB-D Sequence Acquisition

We designed and implemented a 3-camera system to aid
in data acquisition and annotation, comprising three Intel
Realsense 415 RGB-D cameras affixed to a metal framework,
as illustrated in the bottom of Figure 2. The advantages of
this setup include:
• Tripling the data yield.
• Reducing ambiguity in pose annotation, especially regard-

ing translation along the depth dimension, by using multi-
view imagery to enforce consistency across all views.

• Enhancing tracking accuracy of static objects with Aruco
markers from all three views, making PnP more stable.



Figure 2. Overview of the PACE annotation pipeline.

Figure 3. The distribution of object categories within the collected
dataset. Articulated objects are marked in red.

Calibration of Multi-Camera Extrinsic Parameters We
calibrate this multi-camera system through a semi-automatic
process. Aruco markers initially intended for calibra-
tion proved insufficient for high-accuracy rotation estima-
tion. Hence, we resorted to trifocal tensor estimation, i.e.
TFT [17]. The process begins with feature extraction and
matching, followed by bundle adjustment to refine the po-
sitions of the 3D landmarks and camera poses. For reliable
feature matching, we employ the SuperPoint [7] descrip-
tor and SuperGlue [33] matcher, using a stringent threshold
for matching. We observe that rotational component of the
resulting extrinsic parameters is generally precise, but the
translation aspect suffers from scale ambiguity inherent in
Structure-from-Motion approaches. We correct this by cal-
ibrating the scale against markers, applying the following
formula to obtain the optimal scale factor:

s1→2∗ =
t̂1→2 · t′1→2

t̂1→2 · t̂1→2

, s1→3∗ =
t̂1→3 · t′1→3

t̂1→3 · t̂1→3

,

where t̂i→j is the TFT predicted translation (up to a scale)
from camera i to camera j, t′i→j is the marker-calibrated
translation in real metric scale. We set the extrinsics of the
first camera to be the identity matrix.

In cases of repetitive texture patterns, manual intervention
is required to establish reliable feature correspondences due
to the limitations of SuperPoint+SuperGlue.

3.3. Annotation of Pose Ground-Truths

Previous methodologies have utilized Aruco markers to auto-
mate pose estimation through Perspective-n-Points; however,
this approach has two drawbacks:
1. Markers in the scene detract from realism and compro-

mise dataset integrity: training on marker-augmented
imagery may result in overfitting to these artificial pat-
terns.

2. Marker-based annotations are inapplicable to dynamic
objects, thus restricting the method’s utility to static sce-
narios.

Annotation of Static Object Poses To address the first
issue, we employ markers to automate the annotation of
static object poses, and then remove the marker appearances
from the dataset. We achieve this with a marker inpainting
strategy, detailed as follows. Initially at step 1, we place a
marker (Marker 1) somewhere within the camera’s field of
view. We then record a short video with this marker in view.
In step 2, we place a second marker (Marker 2) at a chosen
distance from the first, and record another video. After step
2, we remove Marker 1, and begin the actual object capture
process (with only Marker 2 present). After this process, we



end up with: (1) frames with Marker 1 only, which clearly
depict the surface where Marker 2 will later appear; (2)
frames capturing both markers, providing helpful calibration
cues; (3) frames with Marker 2 only, which represent our
main capture. We use the frames from the first two steps to
seamlessly inpaint [30] Marker 2’s area in the main capture,
as depicted in Figure 4. We leverage Marker 2 for automated
pose tracking, and manually correct the tracking every 40
frames in case of drift.

Figure 4. Illustration of the marker inpainting process.

Annotation of Dynamic Object Poses For dynamic ob-
jects, the traditional marker-based tracking approach is in-
sufficient, as the scene markers do not move in tandem
with the objects. In such instances, we harness the capa-
bilities of BundleTrack [42], an advanced RGB image-based
tracking algorithm. BundleTrack conducts feature corre-
spondence analysis between successive frames to estimate
poses, complemented by a bundle adjustment algorithm to
optimize keyframes globally and minimize tracking errors.
Despite BundleTrack’s proficiency in approximating poses,
it is prone to drift, necessitating the manual adjustment of
poses every ten frames to ensure precision. This delicate
step represents the most labor-intensive aspect of our annota-
tion pipeline, given the current limitations of state-of-the-art
tracking techniques in complex scenarios.

Generation of Segmentation Masks Upon successful
pose annotation, we generate occlusion-aware segmentation
masks, using z-buffer rendering techniques. In cases where
hand interactions are involved, we employ the SAM [18]
model to delineate hand masks, and subsequently subtract
these from the previously computed object masks to achieve
accurate segmentation.

4. Dataset Statistics

In pursuit of diversity, we placed the objects ten disparate en-
vironments, each featuring varying levels and configurations
of occlusion. We document 10 video sequences per scene,
each sequence encompassing 1 to 5 objects. We captured
RGB and depth data using an Intel RealSense D415 camera,
with a resolution of 1280× 720. The capture process spans
distances ranging from 0.5m to 1.5m from the objects.

4.1. Object Distribution and Diversity

The comprehensive distribution of objects is depicted in
Figure 3, showcasing a diverse array of both rigid and ar-
ticulated models. As demonstrated in Figure 5, the dataset
encompasses a broad spectrum of object sizes, with the ma-
jority measuring approximately 0.2m along the bounding
box diagonal. This includes larger items such as storage bins,
adding to the heterogeneity of the dataset.

Figure 5. Distribution of object sizes within the dataset, indicating
the prevalence of small to medium-sized objects and the inclusion
of larger items.

4.2. Variability in Pose, Occlusion, and Environ-
mental Context

The dataset is characterized by a rich variability in object
poses, as illustrated in Figure 6, which outlines the statisti-
cal distribution of azimuth and elevation angles, indicating
comprehensive spatial coverage.

Moreover, we categorized and analyzed the occlusion
levels, as shown in Figure 7, delineating instances of se-
vere, moderate, and minor occlusions. Such classification
is crucial for assessing the robustness of pose estimation
algorithms against varying degrees of visibility.

A visual representation of the ten distinct environmen-
tal settings used for data capture is provided in Figure 8,
reflecting the contextual diversity of the dataset.



Figure 6. Statistical distribution of object poses, highlighting the
diversity in azimuth and elevation angles.

Figure 7. Distribution of occlusion levels within the dataset, which
are critical for evaluating pose estimation performance in real-world
conditions.

4.3. Dataset Split for Training, Validation, and Test-
ing

To facilitate a comprehensive and equitable evaluation of
pose estimation methodologies, we partition the dataset into
validation and test subsets following a 20/80 ratio. This sep-
aration ensures that a substantial volume of data is available
for rigorous testing.

Additionally, to support research necessitating extensive
training datasets, we generate a considerable set of synthetic
images utilizing a physically based renderer (PBR) [6]. The
training set comprises over 52,000 images, each featuring
multiple objects, culminating in a vast number of annotations.
Qualitative examples of the synthetic images are presented
in Figure 9.

5. Evaluation Benchmarks
State-of-the-art pose estimation algorithms typically decom-
pose the task into two distinct stages: detecting or segment-
ing the object of interest, followed by pose estimation within
the predicted bounding box or mask. While the latter has
been the primary focus in literature, often leveraging off-
the-shelf detectors, a comprehensive evaluation requires an
isolated assessment of each stage. Therefore, we examine
the pose estimation result under the assumption of perfect
detection to allow for equitable comparison across methods.
The object detection performance of current state-of-the-art
methods can be found in the supplementary and is not the fo-
cus of this dataset. We also introduce a benchmark for object
pose tracking, premised on the availability of ground-truth

data in the initial video frame.

5.1. Pose Estimation Benchmark

This benchmark is divided into instance-level and category-
level pose estimation. The former concerns known instances
during training, while the latter involves unknown instances
similar to those in the training set.

5.1.1 Instance-Level Pose Estimation

This task demands the prediction of rotation and translation
for known instances from the training set.

Metrics: Adhering to the BOP challenge protocol [15],
we utilize Average Recall (AR) of Visible Surface Discrep-
ancy (VSD), Maximum Symmetry-Aware Surface Distance
(MSSD), and Maximum Symmetry-Aware Projection Dis-
tance (MSPD) as our metrics. Detailed computation of these
metrics is described in [15]. Objects with visibility fraction
less than 10% are skipped for evaluation following the BOP
[15] convention. Results are averaged across all instances.

Baselines: We assess four baselines: PPF [8], Cosy-
Pose [19], SurfEmb [12], and GDRNPP [40]. While PPF
does not require training data, the others are state-of-the-art
methods dependent on additional training on the PBR dataset.
To focus on pose estimation performance, we assume that
ground-truth instance detections are available.

Result Analysis: The quantitative analysis is presented in
Table 3. Notably, while state-of-the-art methods excel on the
BOP benchmarks, they do not perform as well as PPF, which
relies on local geometric feature matching in point clouds.
The relative success of PPF highlights the potential for im-
provement in state-of-the-art methods, particularly regarding
robustness and scalability to handle a large set of instances.
Qualitative results can be found in the supplementary.

5.1.2 Category-Level Pose Estimation

Category-level pose estimation tasks involve predicting the
3D bounding box dimensions, rotation, and translation of
target instances, given only the category information a priori.

Metrics: We adopt from NOCS [41], calculating mean Av-
erage Precision (AP) across predefined angle and translation
thresholds. Specifically, AP@0:20◦ represents AP averaged
from 0◦ to 20◦ at 1◦ intervals; AP@0:5cm is averaged from
0cm to 5cm at 0.25cm intervals; AP@0:20◦,0:5cm combines
these angle and translation thresholds. IoU25 and IoU50 de-
note AP for 3D bounding box matches at IoU thresholds of
25 and 50, respectively. Objects with visibility fraction less
than 10% are skipped for evaluation following the BOP [15]



(a) basket (b) box top (c) cabinet (d) carpet (e) chair

(f) china floor (g) desk1 (h) desk2 (i) stairs (j) wooden floor

Figure 8. Sample images from the 10 environments.

Modality Detection ARV SD↑ ARMSSD↑ ARMSPD↑ AR↑
PPF [8] D G.T. 35.3 42.7 49.3 42.4
CosyPose [19] RGB G.T. 1.4 0.3 11.5 4.4
SurfEmb [12] RGB G.T. 6.2 3.0 17.8 9.0
GDRNPP [40] RGB-D G.T. 3.6 2.1 15.4 7.0

Table 3. Instance-level pose estimation results showcasing the robustness of PPF and the potential for improvement in state-of-the-art deep
learning-based methods.

Figure 9. Example images from the synthetic dataset generated
with a physically based renderer (PBR).

convention. Results are separately reported for both rigid
and articulated objects.

Baselines: We evaluate six recent category-level pose es-
timation methods: NOCS [41], HS-Pose [47], SGPA [4],
DualPoseNet [25], SAR-Net [24], and ANCSH [22], the
latter specifically designed for articulated objects. For adapt-
ing rigid-object-focused methods to articulated objects, each
movable part is considered a distinct category. For instance,
scissors with two movable parts are treated as two sepa-
rate categories. Ground-truth detections are presumed for
each method, except for NOCS, which outputs both instance

masks and pose estimations using a unified network. The
compared methods all use the depth as input.

Result Analysis: Quantitative comparisons are listed in
Table 4. On rigid objects, HS-Pose shows excellent per-
formance on IoU25 and IoU50, as well as AP metrics for
translation, but falls short on rotation AP metrics compared
to SGPA, suggesting a proficiency in size and translation pre-
diction but not rotation. SGPA excels in rotation estimation
but demonstrates lower performance on bounding box size
metrics. For articulated objects, all methods face challenges
due to the movable parts, with ANCSH underperforming on
the large-scale real-world dataset, indicative of a significant
sim-to-real gap. NOCS shows instability, likely due to its
reliance on RGB-based coordinate prediction, which lacks
robustness and scalability. Qualitative results are available
in supplementary.

5.2. Pose Tracking Benchmark

We categorize state-of-the-art pose tracking methods into
model-free, which use a 3D CAD model, and model-based,
requiring only the initial pose at the first frame.

Metrics: For model-free pose tracking, we use four met-
rics following previous work [39]. 1) 5◦5cm, the percentage
of predictions with rotation error < 5° and translation error
< 5cm. 2) IoU25, the percentage of intersection over union
that is larger than 25% between the two 3D bounding boxes



Detection IoU25↑ IoU50↑
AP

0:20◦↑ 0:60◦↑ 0:5cm↑ 0:15cm↑ 0:20◦

0:5cm

x 0:60◦

0:15cm

x
NOCS [41] Mask-RCNN 0.0/0.0 0.0/0.0 0.0/0.0 0.1/0.0 2.8/0.0 26.1/0.0 0.0/0.0 0.1/0.0
HS-Pose [47] G.T. 32.7/0.2 7.3/0.0 5.2/0.0 7.0/0.4 61.4/41.0 86.2/79.5 4.0/0.0 6.6/0.4
SGPA [4] G.T. 1.3/0.0 0.0/0.0 6.7/1.1 13.4/9.0 18.5/10.4 58.4/49.2 3.3/0.3 11.7/7.7
DualPoseNet [25] G.T. 0.1/0.0 0.0/0.0 5.1/0.0 5.3/0.0 15.0/34.6 53.6/69.4 1.4/0.0 4.1/0.0
SAR-Net [24] G.T. 25.3/0.5 1.1/0.0 5.2/0.1 7.1/2.6 37.6/37.1 77.3/77.9 2.8/0.1 6.3/2.6

Table 4. Category-level pose estimation benchmark combining the performance metrics for both rigid and articulated object pose
estimation, separated by slash.

with ground-truth size, transformed by the predicted and
ground-truth 6D pose, respectively. 3) Rerr, mean value of
rotation error in degrees. 4) Terr, mean value of translation
error in centimeters. Here the last two metrics are respect to
IoU25 since objects with IoU≤ 25% are not counted.

For model-based pose tracking, we report the area un-
der curve (AUC) with respect to ADD, ADD-S [45] and
ADD(-S). We set the maximum threshold of AUC to be 0.1m
[38]. The ADD metric is first introduced in [14] to calcu-
late average per-point distance between two point clouds,
transformed by the predicted pose and the ground-truth, re-
spectively. For symmetric objects like bowls, ADD-S metric
is introduced to count for the point correspondence ambigu-
ity. The notation ADD(-S) corresponds to computing ADD
for non-symmetric objects and ADD-S for symmetric ob-
jects. The objects with visibility fraction less than 10% are
skipped for evaluation following the BOP [15] convention.
Results are reported by averaging over the rigid/articulated
categories, separately.

Modality ADD↑ ADD-S↑ ADD(-S)↑
RBOT [37] RGB 7.1/0.5 10.3/0.8 7.4/0.5
ICG [34] RGB-D 35.6/10.1 48.1/15.2 38.1/10.1

Table 5. Model-Based Pose Tracking. We report the area under
curve (AUC) with respect to ADD, ADD-S and ADD(-S). The
higher value, the better performance.

Baselines: For methods relying on object mask during
tracking, we directly used the ground-truth mask. Since the
big gap of performance between rigid and articulated objects,
we separately reported their average results.

We regarded each part of the articulated objects as inde-
pendent for all tracking methods except for CAPTRA [44]
which treat all parts of an object as a whole. We trained
CAPTRA for each category using our synthetic PBR data.

Result Analysis: Tables 5 and 6 present the performance
metrics of state-of-the-art (SOTA) tracking methods on the
PACE dataset with both rigid and articulated results sepa-
rated by slash. The methods exhibit limited success, with
ICG [34] achieving the highest AUC with respect to ADD(-
S) at only 38.1% for rigid objects and a mere 10.1% for
articulated objects, as shown in Table 5. Table 6 underscores
the challenge further, with the best 5◦5cm accuracy below
13%, and IoU25 not exceeding 47%, indicating substantial
pose estimation errors for over half of the objects.

The convention followed by 6-PACK [39] and Bundle-
Track [42] disregards objects with IoU≤ 25% when com-
puting rotational and translational errors (Rerr and Terr).
However, in the context of our dataset where methods gen-
erally struggle, this approach could mask true performance
levels. This discrepancy is exemplified by BundleTrack [42],
which reports lower performance in 5◦5cm and IoU25 met-
rics yet shows seemingly better results for Rerr and Terr.
Such results indicate that current SOTA methods may require
significant improvements to handle the complexity presented
by the PACE dataset effectively. Qualitative results can be
found in the supplementary.

6. Conclusions and Future Work

This work presented a comprehensive benchmark for 3D
object pose estimation and tracking through the introduc-
tion of the PACE dataset. Our findings reveal that while
there have been significant advancements in pose estimation
techniques, there exists a substantial performance gap when
these methods are applied to real-world, diverse datasets
such as PACE. Particularly, current state-of-the-art methods
struggle with articulated objects and exhibit limitations in
robustness and scalability. This benchmark serves not only
as a testament to the progress achieved but also as a clarion
call for the research community to address the complexities
of real-world applications.

The results from the PACE dataset underscore a pro-
nounced generalization gap, suggesting that existing models
may not sufficiently capture the complexities inherent in



Training-Free Modality 5◦5cm↑ IoU25↑ Rerr↓ Terr↓
BundleTrack [42] ✓ RGB 6.4/11.2 9.1/14.1 3.2/5.5 2.6/0.8
CAPTRA∗ [44] ✗ D 12.9/4.4 47.0/18.5 20.2/46.7 2.1/1.5
CAPTRA [44] ✗ D 12.9/4.4 45.8/20.6 19.2/40.9 2.2/1.5
6-PACK [39] ✗ RGB-D 9.2/3.9 23.1/16.7 17.7/33.6 2.1/1.2

Table 6. Model-Free Pose Tracking. Both rigid and articulated results are reported. For 5◦5cm and IoU25, the higher value means better
performance while for Rerr and Terr , the situation is reversed. Note that Rerr and Terr are respect to IoU25 since objects with IoU≤ 25%
are not counted. Here CAPTRA∗ uses the predicted 3D bounding box size while others take the ground-truth size to calculate IoU.

diverse real-world scenarios. To bridge this gap, future re-
search could explore the potential of larger, more complex
models for pose estimation that can encapsulate a wider
variety of object features and environmental contexts.
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[15] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann
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[17] Laura F Julià and Pascal Monasse. A critical review of the tri-
focal tensor estimation. In Image and Video Technology: 8th
Pacific-Rim Symposium, PSIVT 2017, Wuhan, China, Novem-
ber 20-24, 2017, Revised Selected Papers 8, pages 337–349.
Springer, 2018. 4

[18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 5
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PACE: Pose Annotations in Cluttered Environments

Supplementary Material

A. Object Detection Benchmark
Though the primary focus of this dataset is the pose esti-
mation, we are interested in how current state-of-the-art
detection models perform on our dataset. In practice, the
best method can be served as the default detection method
when evaluating the pose estimation result.

A.1. Instance-Level Object Detection

Evaluation Metrics: Consistent with established litera-
ture, we employ Average Precision (AP), Average Precision
at IoU thresholds of 50% (AP50) and 75% (AP75), along
with Average Recall (AR) as the metrics for evaluation.

Baseline Methods: The task is categorized into bounding
box (BBox) detection and instance segmentation (Mask). We
benchmark the performance against three models: Mask R-
CNN [13], YOLO-X [10], and MaskDINO [20]. MaskDINO
is notable for its claim of providing precise bounding box
and instance segmentation results. Models are trained on a
provided PBR dataset, treating each instance as an individual
”category“, culminating in 576 unique categories. Results
are averaged across all instances in the test set.

Results and Analysis: Quantitative outcomes are pre-
sented in Table 7. We see that YOLO-X is the best in terms
of the bounding box detection while MaskDINO is the best
in instance segmentation.

Type AP↑ AP50↑ AP75↑ AR↑
YOLO-X [10] BBox 45.4 60.0 51.5 61.5
MaskDINO (BBox) [20] BBox 31.5 42.5 36.1 48.8

Mask R-CNN [13] Mask 26.1 41.7 30.2 33.6
MaskDINO (Mask) [20] Mask 29.5 42.0 33.2 44.1

Table 7. Instance-level object detection results.

A.2. Category-Level Object Detection

Evaluation Metrics: The metrics for category-level ob-
ject detection are identical to those used for instance-level
detection.

Baseline Methods: This task is bifurcated into bounding
box (BBox) detection and instance segmentation (Mask). We
evaluate the performance of YOLO-X [10], MaskDINO [20],
and the zero-shot detector GLIP [21]. GLIP is capable of

inferring bounding boxes based on textual descriptions of tar-
get categories. For instance segmentation, we compare Mask
R-CNN [13], MaskDINO [20], and Grounded SAM [28],
which can generate instance masks from text prompts in a
zero-shot fashion. Non-zero-shot methods are trained on
images from the provided PBR training set.

Results and Analysis: Quantitative findings are detailed in
Table 8. YOLO-X again is the winner is detecting bounding
boxes and MaskDINO is the winner in instance segmentation.
Though zero-shot methods can achieve some results but they
are still far behind the supervised methods, partially due to
the text ambiguity in describing the objects.

Type ZS AP↑ AP50↑ AP75↑ AR↑
YOLO-X [10] BBox ✗ 50.9 66.4 57.9 64.3
MaskDINO (BBox) BBox ✗ 46.8 65.3 53.3 59.7
GLIP [21] BBox ✓ 22.2 30.3 26.1 59.8

Mask R-CNN [13] Mask ✗ 40.9 60.3 47.8 51.4
MaskDINO (Mask) Mask ✗ 42.9 65.1 47.4 54.6
Grounded-SAM [28] Mask ✓ 8.2 11.7 9.6 15.0

Table 8. Category-level object detection results. This table
will reflect the comparative effectiveness of both zero-shot and
traditional detection methods in category-level detection tasks.

B. Baseline Adaptations
This section delineates the adaptations made to the base-
line methodologies enabling their evaluation on our dataset.
Unless otherwise stated, the configurations adhere to the
defaults specified in their respective originating papers.

B.1. Handling Object Symmetry

For baselines tasked with rotational regression, we address
the ambiguity presented by object symmetry, where multiple
rotations correspond to a single input by normalizing these
rotations into distinct, unambiguous targets, following the
method outlined in [31].

B.2. Instance-Level Pose Estimation Baselines

CosyPose [19] To maintain comparability, we exclude the
random background pasting augmentation from CosyPose.
Moreover, to accommodate our hardware constraints, we
reduce the image resolution by half.

SurfEmb [12] With SurfEmb, images are decoded into
a shared continuous embedding space alongside 3D point



embeddings. Due to the extensive variety of objects in our
dataset (576 in total), a separate image decoder for each
would exceed our GPU’s memory capacity. Consequently,
we implement a unified decoder across all objects.

B.3. Pose Tracking Baselines

CAPTRA [44] We treat all objects as non-symmetric for
training purposes, given that CAPTRA’s loss is designed
to handle only asymmetry or continuous symmetry along
the y-axis. We also limit our scope to articulated objects
comprising two parts, aligning with CAPTRA’s fixed-part
count assumption. To manage the higher image resolu-
tion and variable object size in our dataset compared to
NOCS, we decrease the radius parameter when computing
the axis-aligned bounding box aabb and downsample the
back-projected point clouds prior to ball filtering.

C. Qualitative Comparison on Pose Estima-
tion/Tracking

In this section, we present additional illustrations that further
elucidate the performance of various baseline methodologies.
Specifically, Figure 10 provides a visualization of the effi-
cacy of instance-level pose estimation methods. Similarly,
Figure 11 demonstrates the performance of category-level
pose estimation techniques. Additionally, Figure 12 and
Figure 13 offer visual representations of the performance
metrics for model-based and model-free tracking methods,
respectively. These visualizations serve to complement the
quantitative analyses provided earlier, offering a more com-
prehensive understanding of each method’s effectiveness.

D. Annotation Software and Pipeline Details

Our annotation interface features a primary display that si-
multaneously presents views from a triple-camera setup. Ad-
jacently, a sidebar is integrated, showcasing the current an-
notations within the scene, along with a catalog of potential
3D models from our database. Users can initiate the pose es-
timation by aligning corresponding points on the 3D models
with their 2D image counterparts, utilizing a RANSAC-PnP
algorithm. Subsequent refinements to the pose are facilitated
through incremental rotations and translations, which can be
executed via keys.

For enhanced user experience and efficiency, we have
designed a tripartite panel system. This allows users to seam-
lessly toggle between 2D annotation, 3D annotation, and 2D
segmentation workflows. As illustrated in Figure 14, this
configuration enables real-time previews of annotations in
both 2D and 3D, ensuring an intuitive and dynamic annota-
tion process.

E. Snapshots for All the Objects
Figure 15 gives the model snapshots for all our collected
objects.



Figure 10. Qualitative comparisons of instance-level pose estimation methods highlighting the robust performance of the PPF method across
various instances.



Figure 11. Qualitative comparisons of category-level pose estimation methods.



Figure 12. Qualitative comparisons of model-based tracking methods.



Figure 13. Qualitative comparisons of model-free tracking methods.



Figure 14. From top to bottom: 2D pose annotation panel, 3D pose annotation panel with integrated point clouds from all three views, 2D
segmentation annotation panel.



Figure 15. Snapshots from all the collected objects.
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