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Relative CNN-RNN: Learning Relative
Atmospheric Visibility From Images

Yang You, Cewu Lu™', Member, IEEE, Weiming Wang, and Chi-Keung Tang, Senior Member, IEEE

Abstract— We propose a deep learning approach for directly
estimating relative atmospheric visibility from outdoor photos
without relying on weather images or data that require expensive
sensing or custom capture. Our data-driven approach capitalizes
on a large collection of Internet images to learn rich scene
and visibility varieties. The relative CNN-RNN coarse-to-fine
model, where CNN stands for convolutional neural network
and RNN stands for recurrent neural network, exploits the
joint power of relative support vector machine, which has a
good ranking representation, and the data-driven deep learning
features derived from our novel CNN-RNN model. The CNN-
RNN model makes use of shortcut connections to bridge a
CNN module and an RNN coarse-to-fine module. The CNN
captures the global view while the RNN simulates human’s
attention shift, namely, from the whole image (global) to the
farthest discerned region (local). The learned relative model can
be adapted to predict absolute visibility in limited scenarios.
Extensive experiments and comparisons are performed to verify
our method. We have built an annotated dataset consisting of
about 40000 images with 0.2 million human annotations. The
large-scale, annotated visibility data set will be made available
to accompany this paper.

Index Terms— Convolutional neural network, recurrent neural
network, deep learning, atmospheric visibility, relative attributes
learning, large-scale image collection.

I. INTRODUCTION

MOG pollution has become a global health and envi-
ronment concern. For example, Indonesian forest fires
have posed recurring air pollution problems in Singapore and
Malaysia. Volcanic eruptions in Iceland in 2010 had caused
enormous disruption to air traffic across Europe. Atmospheric
visibility may change drastically in a matter of minutes which
calls for real-time visibility monitors in air traffic control,
pollution monitoring, and accident detection (e.g., fire acci-
dent or arson).
Atmospheric visibility is measured by weather observato-
ries. However, observatories are geographically sparse and
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Fig. 1. An image pair for visibility comparison, where (a) clearly has a better
visibility than (b); it is hard for humans to specify absolute visibility/depth
from single images.

their reported visibilities are typically in hours of delay. Today,
surveillance cameras are abound, and thousands of geo-tagged
outdoor images are uploaded to social media in each second.
Estimating atmospheric visibility from a photo has a high
potential in real-time and ubiquitous monitoring of smog and
air pollution. Different from accurate measurements obtained
from expensive equipment in weather stations, which are used
for accurate scientific calculations and analysis, this affordable,
image-based visibility estimation serves a different and impor-
tant application, namely, timely monitoring of atmospheric
visibility conditions.

A. Relative Visibility

In this paper we propose to estimate relative visibility from
single photos, where zero relative visibility indicates absolute
invisibility and one indicates clearly visible scene. As we
shall explain, our learned relative model can be adapted to
estimate absolute visibility in a limited and small training data
scenario. We believe relative visibility is as useful as relative
humidity which we are used to. Ideally, absolute visibility
should be estimated, which is the farthest distance at which
the pertinent scene is still discernable. However, it is well
known that human specification of absolute depth from single
images is very inaccurate [1]. Another problem is the lack of
meteorological images (or simply images) with sufficient scene
variety and absolute visibility measurement, due to the limited
number of weather observatories and stations (or landmarks
with known distance from the capture camera) around the
world. A general prediction model cannot be reliably learned
from sparse training data.

On the other hand, for humans it is easy to accurately
label relative attributes. For example, in Figure 1, without
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any distance measurement (a) clearly has a better visibility
than (b). Thus, to prepare the training data, we propose
to annotate image pairs by ranking their visibility directly
observed from the images. This makes it possible for accu-
rately labeling a large volume of image data for training
an accurate ranking model. Another advantage is that we
can substantially increase the number of ordering constraints,
by applying an image dehazing filter to automatically generate
new pairwise constraints, when the training pair is labeled
as “unordered” by a human annotator who either sees no
difference or cannot rank the visibility in the given pair.

B. Relative CNN-RNN

We propose the relative CNN-RNN model, where CNN
stands for convolutional neural network and RNN stands
for recurrent neural network, and show that it significantly
outperforms the typically used ranking support vector machine
(SVM), existing machine-learned ranking algorithms, and
state-of-the-art image processing techniques without scene
semantics consideration and/or using large-scale training data.

Our relative CNN-RNN coarse-to-fine attention model
attempts to simulate human’s visual perception on atmospheric
visibility, in both coarse and fine levels. Echoing how humans
can obtain a coarse estimation of the haze density by the global
appearance of the scene, the CNN architecture is responsible
for learning the overall visibility from the whole image. With
a global view, we then start to look for the farthest discerned
region (or object) in the image to determine the scene visibility
where visual processing occurs in a finer level. This is in fact
coherent with the definition of atmospheric visibility used in
meteorology: visibility measures the farthest distance at which
an object or light can still be discerned. Inspired by [2],
we model this coarse-to-fine process by RNN to simulate
the pertinent coarse-to-fine visual attention shift exhibited by
humans. The coarse-to-fine attention transition (an example
is illustrated in Figure 2) can incorporate richer and more
detailed visibility information in comparison to the use of a
global representation such as the CNN feature alone.

It turns out the two visibility description models, namely,
the CNN which represents coarse visibility description, and
RNN which represents the coarse-to-fine attention shift, can
be coherently integrated. The RNN model starts from a global
region gradually shrinking to a local region, while the CNN
model reversely starts from local description to finally obtain a
global representation. Though their goals are different, the two
models share local representations in different spatial regions.
In our framework, we allow the information to flow among the
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The coarse-to-fine sequence. The attention region shrinks from the whole image (1) to the farthest discerned region (7).

two models, that is, the two models “speak” with each other
to collaboratively achieve visibility recognition.

C. Results

We have conducted extensive experiments on both large-
sized relative dateset and small-sized absolute dataset as well.
Our proposed model achieves good results in atmospheric visi-
bility estimation when compared to a set of baseline solutions,
existing machine-learned ranking algorithms and state-of-the-
art image processing techniques. We will release our annotated
visibility dataset for benchmarking, which consists of about
40,000 images and 0.2 million human annotations. As new
images can be added easily this dataset is readily scalable.

II. RELATED WORK
A. Atmospheric Visibility Estimation

The amount of existing work is small on leveraging images
to automatically estimate atmospheric visibility. Moreover,
the previously proposed methods mainly relied on low-level
image cues (e.g., image gradients, contrast, hue, saturation,
etc) without adequate scene consideration or understanding.
Though recent single image depth estimation is improved
by deep learning, e.g., in [3] depth is regressed from patch
patterns, the accuracy of the estimated depth still falls
short for visibility estimation. They also required various
parameter settings or manual specification of visual targets
as reviewed in [4]. Baumer er al. [5] estimated visibility by
measuring the loss of edges of pre-selected known objects in
panoramic images. In [6] a probabilistic based approach was
presented that takes into account the distribution of contrast
in the scene where the Lambertian scene assumption was
used. We prefer a learning-based approach which can
be generally applied or adopted to different scenes. For
example, given the same haze density, a photo depicting a
downtown scene with skyscrapers look quite different from
one depicting mountains and ocean in an open space.

B. Image Dehazing

On the other hand there is a sizable amount of work on
image dehazing. No existing methods however have capital-
ized on large image collection to learn scene visibility from a
great variety of examplars to make the solution more robust
against scene variance. The geometry-based approach [7]-[9]
requires 3D or depth which is acquired from range sen-
sors or rough estimation is made by the user. In [10], [11],
the haze removal processing leverages polarized filters applied
during multiple capture of the same scene. In [12], multiple
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images of the same scene were analyzed which were shot
under different weather conditions. Recent advances in single-
image dehazing used the powerful dark channel prior [13],
powerful optimization [14], [15], practical assumptions on
local contrast [16] and albedos [17], new image filters such
as the atmospheric point spread function or filters derived
from generalized Gaussian distribution [18], [19], a panorama
alongside with user annotation and calibration [5], proba-
bility distribution model on image contrast [6], and a log-
linear model relating transmission and extinction of light [4].
A variety of image-based haze features were investigated
in [20] using regression in a random forest framework. We will
show in the experimental section that although single image
dehazing may seem to be a plausible approach, it cannot be
used for accurate estimation of atmospheric visibility.

III. DATA COLLECTION AND ANNOTATION
A. Relative Visibility Dataset

Our goal is to build a dataset covering a large number
and variety of scenes; this dataset should be readily scalable
to grow and expand with more images. Our first attempt
consisted of collecting images with visibility measurement
obtained from weather observatories and stations around the
world. But observatories are sparsely located and the variety
of scenes is very limited. Furthermore, relying on photos
taken at observatories is not scalable as we believe not many
observatories/weather stations will be built in the coming
years. While other sensors such as visibility meters can be
used, since our goal is to estimate visibility from a single
image, we cannot take into account these sensor signals in the
testing phase.

We next turned to collect outdoor images from the internet
and annotate them by people with environment science train-
ing. We used the keyword “fog”, “haze”, “mist” and “smog”
in Flickr and downloaded about 60,000 images. We dis-
carded low-quality images and included clear and haze-free
images which are selected manually. Finally, we collected
37,420 images with different visibility levels ranging from
clearly visible to heavily smoggy.

To annotate the training images, our first attempt was to
ask annotators to estimate the “farthest distance at which an
object or light can be discerned” given a single image. But
we found that the annotation varies significantly from person
to person. For example, the human visibility annotation of
Figure 1(a) ranged from 300, 400, 600 to 800 meters. This
stems from the fact that human vision in general cannot give
accurate absolute depth measurement, much less that it is
difficult to estimate depth from a 2D image.

It is however easier for us to deduce correct relative relation-
ship without ambiguity, or in our case rank two given images
based on the observed visibility. For example, Figure 1(a) has a
better visibility than (b) without absolute visibility estimation.
Thus, image pairs annotation was adopted, that is, we asked
annotators to rank a given image pair in visibility. In the
ambiguous case where the user cannot decide, the image pair
will be labeled as “similar visibility.” A total of 7 subjects was
asked to produce 224,520 image pairs annotations. We then

CNN-RNN
Attention Model

CNN-RNN
Attention Model

\ N\ J\ J
T | I

CNN-RNN .
Attention Model Relative SVM

Input

Fig. 3. Our relative CNN-RNN architecture for an image pair; (a) and (b)
are input image pairs.

substantially increase the number of ordering constraints auto-
matically by employing a dehaze filter which will be described
shortly.

We also ask the subjects to annotate the farthest discerned
regions of the images. This information will be used in our
coarse-to-fine model training.

B. Absolute Visibility Dataset

We have prepared a small dataset of absolute visibility
measurement captured at a small number of (pixel) locations,
courtesy of the Hong Kong Observatory. Not surprisingly,
their cameras were fixed and captured a very limited number
of scenes. While their cameras captured images at hourly
intervals, most of the images are highly redundant since each
camera captured the same scene over each passing year. While
approximately 500,000 images with absolute visibility read-
outs were collected, after removing highly redundant images
only 3,146 images remain to form the small absolute visibility
dataset. The unit of visibility measurement is metres.

IV. RELATIVE CNN-RNN COARSE-TO-FINE MODEL

We propose the relative CNN-RNN model to solve our
machine-learned ranking problem. In this section, we first
revisit ranking SVM and introduce how to enrich the training
data by applying a dehazing filter on unordered pairs. We then
describe our novel CNN-RNN architecture. Finally, we present
how to embed this architecture in ranking SVM. Figure 3 gives
an overview of our relative visibility learning framework.

A. Relative SVM

In relative SVM, we define a set of training images I;,i =
1,...,n, represented in R™ by feature f([;). We are also
given a set of ordered image pairs O and a set of unordered
pairs S, such that (i, j) € O =i > j, that is, image i has a
better visibility than j, and (i, j) € U = (i = j) means that
i and j have similar visibility or the annotator cannot decide
the order. Our goal is to learn a visibility score function

r(I)=w' f(I), (1)
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where f(I) is a feature computed on image I and w’
is feature weight, such that the number of the following
requirements satisfied should be maximized:

V@i, j) e O, wf(Il)=w'f()), 2)
VG, j) eU, w'f)=w"f). A3)

While this is an NP hard problem, it is possible to approximate
the solution with the introduction of nonnegative slack vari-
ables as similarly done in SVM classification. We adopt the
formulation in [21], which was originally applied to webpage
ranking, leading to the following optimization problem:

. 2
min [Wi3 +CC > &G+ D 7i))
(i,))eO @, j)el
st ¥, j) e O, W) —w! fI) =1-¢&; (5)
VG, j)yeU, W f) —w )l =yij, (6
where ¢&; ; and y;; are errors standard in SVM formulation
and C is a constant parameter. With the learned SVM model,

given an image I with feature f(7) its visibility score is given
by w' £ ().

“)

B. Inferring Additional Ordering Constraints

Scene visibility is a complex visual concept requiring a
large number of image pair constraints in training to avoid
undesirable over-fitting. We propose to use a state-of-the-
art image dehazing filter to automatically generate new pair-
wise constraints from the given training pairs labeled as
“unordered,” where the human annotator cannot differentiate
the relative visibility ranking. As done before, we remove the
image pairs with haze-free image from the unordered image
pair set U/ and denote the resulting set B.

Denoting ¢[-] as a dehazing filtering operation, we can
immediately produce new order constraints

VG, j) e B, w! f(plL]) > w' f(I)), (7
V@i, j) € B, wl f(I) <w f(ll;]). (8)

Currently state-of-the-art dehaze filters are excellent in
enhancing visibility given a hazy image. The dehaze filter we
use is [13] with a guided filter. Figure 4 shows an example of a
new order pair produced. Though, few of faircases in dehaze,
they still don’t degrade the overall training preformance in the
viewpoint of statistics.

In response to the newly added constraints the relative SVM
can be expressed as,

. 2 _
min [WI3 +CL D &+ D vig+ D Gfj+n;))]
(i,/)eO @i, j)ed @i,j)eB
st VG, ) eO, Wiy —wifU)=1-¢;,

VG, j)eU, W) —wh fUpl =y,
VG, j) e B, W flplLi) —w' f(I;))>1- ’7??,-»
Vi, ))eB, W fpl)—w' f)=1—n (9

where nfj and 7; ; are errors standard in SVM formulation.
Thus, we effectively resolve the ambiguity and double the
number of ordering constraints from the given unordered pairs
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Fig. 4. New ordered pair produced from unordered pair using dehaze filter.

without any extra human annotation. We believe this training
set enrichment scheme can be applicable to other relative
problems as well as long as an enhancing filter is applicable.

C. CNN-RNN Architecture

The performance of standard ranking SVM depends heavily
on the design of image features (descriptors). Handcrafted
features commonly used in computer vision rely on human
observations and assumptions. It is however difficult to design
an optimal feature to capture complex atmospheric scene
visibility where a large variety of scenes has to be considered.

We propose the CNN-RNN architecture to describe the con-
cept of scene visibility. The output is a feature vector obtained
in a data-driven manner and encodes discriminative visibility
information. As shown in Figure 5, our architecture consists of
two deep learning modules, namely, the CNN module and the
RNN model module. The CNN module describes the global
view, while the RNN module simulates how humans search
for the farthest discerned region. We first introduce the two
modules independently, and then describe how to integrate
them into a unified model by enabling information exchange
among them.

1) CNN Architecture: Recent research has demonstrated
the power of data-driven CNN features which consistently
outperform handcrafted features thanks to the rich information
inherent in the large-scale image data collection. In this paper,
we adopt the CNN architecture following the design of [22] to
describe global visibility of an input image (see Figure 5(a)).
The CNN architecture has 7 layers. The first 5 layers are
convolution layers with max-pooling with the 6" and 7%
layers being fully connected layers. The 7/ layer outputs a
4096D CNN feature. Denoting ¢; as the CNN parameters of
the ['" layer, ® = {6y, ..., 67} is the set of CNN parameters.

2) RNN Model: We now model how to search for the
farthest discerned region using the RNN model. As shown
in Figure 5(b), starting with the whole image, the coarse-
to-fine region will gradually zoom into the farthest discerned
region in 6K + 1 states in a sequential manner (see Figure 2)
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Fig. 5.

where K = 3 is used in our paper, since we found 20 to
30 states are sufficient to capture the attention shift. The choice
of 6K + 1 is to make sure every K layers correspond to a
CNN layer.

In the training phase, the ground truth coarse-to-fine atten-
tion regions are produced as follows. Coarse-to-fine regions
in the first state and last state are respectively the whole
image and the farthest discerned region, the latter of which
was marked during the annotation step. For the in-between
6K — 2 states, we assume that the attention coarse-to-fine
regions are uniformly located between them. That is, their
bounding box coordinates (top-left and bottom-right) are uni-
formly sampled between the whole image and the farthest
discerned region. We train the RNN model on the labeled
sequence. In the testing phase, we predict the regions without
the labeled sequence. The RNN model has following three
components:

a) Sensor network: At each step f, the system receives
a predicted coarse-to-fine region r,_; and input image /.
We crop the coarse-to-fine region as the input of sensor
network. Denote the sensor network as

vr = gs(c(, ri-1); ws) (10)
where g is network parameter. c(/,r;—1) is the region r;_;
in /. The network we adopted is the AlexNet architecture, and
the output of v, is a 4096D feature vector which is the 6"
layer of the sensor network.

b) Internal state: Our RNN coarse-to-fine model main-
tains the internal states which presents information extracted
from historical observations. At each step 7, we have a state
vector h; (256D) encoding human knowledge on the search
of the farthest discerned region from state 1 to state 7. They
are predicted by the previous state /2,1 and the current region
visual descriptor v,. This internal state is formed by the hidden

CNN-RNN Architecture. (a) and (b) are respectively the CNN and RNN model. Red dashed line box is the output feature. We use ¢ = 8.

units s, of the recurrent neural network, and is updated over
time by the core network h; = gpn(h;—1,vs, yy) which is
defined as

hy = gh(ht—l,vt, Wh)

= ReLU(WUv, + Whhtfl + d) (11)

where y, = {W,, Wy, d} is the parameter of the internal
state and ReLU is the rectified linear unit (ReLU) activation
function which computes max(x, 0).

c¢) Location network: The state h; is used to predict the
next location r; by the network r, = g,(h;, w,). We use a two-
layered network to predict regions. The first layer is a hidden
layer with a 128D parameter and the second layer outputs a 4D
vector indicating the coordinates of the bounding boxes of the
regions. In the training phase, we introduce a location Ly norm
loss function to measure the performance of the prediction of
the region

E(y) =D e(yr) (12)

where e, (w,) = |lgr(hs, yr) — vt||%, which will be minimized
in the unified objective function. We denote the parameters set
of RNN model as ¥ = {yyg, wn, v, }.

3) Overall Architecture: To gradually search the far-
thest discerned region, RNN learns an attention window
sequence from the whole image to the farthest discerned
region as shown in Figure 2. Therefore, the early states
of RNN capture more global information, while later
ones describe local information surrounding the farthest
discerned region. For the CNN model, during the forward
propagation, the neuron in the later CNN layer repre-
sents a larger region due to the convolution operation.
Therefore, we can associate RNN state vector with the
CNN layer that has similar representation scale to advance
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the representation. Inspired by [23], it is achieved by
making use of shortcuts connection, which is a simple
add operation. Specifically, we build shortcuts connection
between the (¢ — i)' layer of CNN, where ¢ = 8, and
the [(i — 1)K + 1]'" state of the RNN model, where
i =1,...,7, as shown in Figure 5(a). For example, for
i = 1, both the 7" CNN layer and the 1*’ RNN state
describe the whole image. Since the CNN layer and RNN
state vector have different dimension, we introduce opera-
tion of 7 on 6., _1),x -1 with regard to attention region r;.
In detail, the operation of 7 (0._;_1)/k—1, ;) is to extract
the parameters of ._(;_1),x—| that present the pixels in the
region of r;, then, uniformly sample 256 parameters from
these parameters. Note that the sampling scheme we use is
max-pooling in a non-overlapping manner. Therefore, we
design our shortcuts connection as,
hy = hi 4+ FOc——1)/K -1, 1) (13)
The back-propagation is applied on hj}, therefore,
Oc—(t—1)/k—1 and h; are directly optimized together.

D. Objective Function

By embedding our CNN-RNN model into the relative
learning framework, our overall objective function of relative
CNN-RNN model can be written as

. 2 n _
min [[w])3 + C DG+ D v+ >, n 4]

i,/)eO @i, et @i,j)eB
+x E(yy) (14)
st Y, j) €O, WIf(L;, ®) — f(I;,®)]>1-&;
VG, jyeU, |Wf(li, ®) — f;, @) =yi;
VG, j) e B, w f(plli], ®) —w' f(I;,®) > 1—n;
VG, j) e B, w flpll;], ®) —w' f(I;, ®) = 1 - n;

15)

where f(I;, @) is the output feature of the CNN-RNN model
((40964-256)-dimensional), ® = {¥, ®} is the set of para-
meters, and x is a balance weight. E(w,) is the coarse-
to-fine attention region regression error function introduced
in Eq. (12).

E. Model Learning

We adopt an iterative optimization scheme to solve the
parameters. That is, we iteratively optimize w and @ by
fixing one and optimizing the other at each iteration. For
w optimization, with fixed @, the optimization problem is a
standard ranking SVM with stable solver available. We use the
solver provided by [24]. Here we focus on how to optimize
@ given fixed w.

To simplify the notation, we denote g; ; (®) = f([;, D) —
fUj, ®)and p; ; (D) = f(pll;], P)—f;, D). With fixed w,
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the objective function to be minimized is

mqi)n Z &G+ z Vi j

i,))eO (EZ

+ > O )+ <E(y) (16)
(i,j)eB

Vi, j) €O, wigij(@=1-¢&; (17)

VG, j) e, W' qij(®)]=yi; (18)

Vi, j) € B, w'pij(®) =1-n (19)

VG, j)eB, W pji(®) =1-n (20)

For constraint Egs. (17), (19) and (20), the error ¢; ; and
;7i+j, n;; can be expressed as their respective hinge loss
functions

J(@) = {0,1-w g j(®)}, Vi, )eO (@)
I (@) = 10,1 —w'pij(®)}, YG.j)eB  (22)
Jjb,i(q’) ={0,1—-w p;(®)}, YGi j)eB (23)

For y; j, according to constraint (18), the corresponding error
function is

T (@) = |whgi j (@), VG, j)el. (24)
Therefore, our overall loss function can be expressed as
J@) = > J@)+ D J(@)
(i,)eO (i,j)eU
+ D (@) + I (@) + kE(pr). (25)

(i.j)eB

We solve J(®) by standard gradient descent which involves
iterative forward propagation and back propagation. In for-
ward propagation, we compute the feature along the network
flow. Here we discuss how to implement back-propagation in
our framework. In back-propagation, we should compute the
derivative of the objective function. Similar to many effective
deep learning solvers, we apply their sub-gradients in the back-
propagation,

0J7 (@) [—wl if 1 > wlg; (@), 26)
0qi, j 0 if otherwise.
27" (@) wlif wlg (@) > 0,
# =10 if wig; j(®) =0, 27
b —wl if qu,-,j (@) < 0.
aJb (o 0Jb (D 0J° (D
The forms of ahjf ) and ° p‘”.(, ) are similar to - alq/( ). For

E(y,), we have the closed form of its gradient which'is used
in the back-propagation.

Extensive experiments (e.g., [22]) have shown that deep
learning models using sub-gradient can also work as well
as those with exact gradient. In the experimental section we
will demonstrate the effectiveness of our solver. The back-
propagation is iterated until the error of Eq. (14) converges.
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Algorithm 1 Relative CNN-RNN Model Solver

Input: Training images [Iy,..., I,

Initialization ® according to section I'V-F.

i=0

repeat
Fix w, solve for ® according to [25].
Fix ®, solve for w according to section IV-E.
1=1+1

until convergence or ¢ > 7

Output: w and P.

F. Initialization

We detail here the initialization of ® = {¥, ®}. For the
CNN part, if ® is initialized by random variables, it will
take a long time for the deep learning solver to converge.
To initialize this part, we first use the page rank algorithm [25]
to sort our training data. Here, the image and order preference
relationship respectively correspond to the page and link for
the page rank algorithm. Then, we segment the sorted training
data into 20 groups. Images in the same group have similar
visibility condition. In doing so, the initial network parameters
can be basically discriminative toward visibility information.
Now, we can use the traditional CNN to learn a classifier on the
20 groups with the pre-trained model. We pre-train the model
using Imagenet 2012 dataset, since it captures many essential
properties of images. Finally, the parameters are directly used
as our initial parameters. For the RNN model part ¥, we train
a RNN model without connection with CNN layers.

Our solver is outlined in Algorithm 1. Similar to
typical deep learning solvers, Algorithm 1 runs until conver-
gence or the maximum number of iterations z has reached.

G. Normalization Mapping

For visibility estimation, our SVM output scores (ranging
[—1.53,0.31]) indicate the relative relationship. Given an
output SVM score one cannot easily judge the visibility
condition of the corresponding image during the testing phase.
Therefore, we use a mapping function that maps the SVM
score to [0,1] according to its percentile position in the training
data. For example, if the testing score is larger than 63%
of training data, the visibility score is 0.63. We record this
mapping operator as p which is simply a lookup table. So, our
final visibility score for a testing image is p[w! f(I;, ®)],
given the learned parameters w and @.

H. Transfer to Absolute Visibility Prediction

As aforementioned, image sets with absolute visibility meter
readouts are difficult to acquire and typically comes in small
scale. Implementing regression directly on small-scale dataset
will inevitably prone to over-fitting. To deal with the problem,
we instead propose to fine tune the above learned relative
model.

Denote /; and y; as the i’ image and its absolute visibility.
Similar to the definition of Eq. (1), our regression function is

4% = 6.0 km
¥ =5.2 km

y° = 6.9 km
¥ =>5.7 km

Fig. 6. Our regressed visibility value () and the ground truth (y?). The red
circles indicate the landmark for visibility measurement.

expressed as,

h@', ®;: 1) =2z"u(l, ®) + b, (28)

where u(®; 1) has the same structure of f (I, ®) which
outputs a 4096D feature, z and b are respectively the weight
and bias term. The following model is used to learn {z, b}
and ¢

. 2 + -
min ||z||2+cZ(¢:. +E) +KE(wy)
1
stz u(l;, ®)+b—y; > 1— fl-+,
vi—zlu(l;,®) —b>1-¢&",
& & =0

We learn {z,b} using support vector regression (SVR).
For learning the network parameter ®, we fine tune the
network parameters on the learned relative model, and the
back-propagation procedure is similar to the above. Then,
we iteratively learn {z, b} and ® until convergence. Thanks to
the learned relative model, only a small number of iterations
suffices for {z, b} and ® to converge to a good solution.

(29)

V. EXPERIMENTS

In this section, we first describe our experimental and
evaluation settings. Then, we compare our performance with a
number of baseline solutions, followed by an analysis of our
solver. A user study is then presented where environmental
scientists were involved. We will discuss our new relative
learning metric — relative AUC. Comparative results will be
benchmarked using this new metric. Finally, we describe the
performance of absolute visibility of the regressed model.

A. Evaluation and Comparison

1) Evaluation Setting: In evaluating our relative visi-
bility, the dataset is partitioned into two sets. A total
of 30,000 images were used for training, while the other
7,634 images were used for testing. We partition the two
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0.94 0.73

0.94 0.80

0.91 0.61

Fig. 7. Estimated relative visibility are shown for

sets by random sample selection to enable cross validation.
For each image we randomly select three other images in the
same image set (training or testing) to build a min-set (that is,
4 images). All pairwise visibility relationships are labeled, that
is, 6 visibility relationships for each min-set.

Therefore, we have 180,000 (30,000 x 6) and 45,000
(7,634 x 6) human responses respectively for training and
testing. That is, we add 53.4% training data (with ordered
image pairs). The unordered images pairs constitute 25.8%

We learn a visibility model {w, ®} on the training data,
and then apply the learned parameters on the testing data.
We obtain the visibility score of each testing comparison pair.

2) Relative AUC: In [24] the evaluation of relative learning
problem in computer vision was described. Applying the
evaluation in our case: if {p[w” f(I;, ®)] > p[w! f(I;, )]},
we predict i > j in visibility; else i < j. The predictions are
then compared to the ground-truth relative ordering.

However, the above relative learning evaluation metric [24]
have two shortcomings. First, it is in fact binary classi-
fication with 50% accuracy baseline that can be achieved
simply by random guess. Non-confident predictions may by
chance be counted as correct by such binary decision. Second,
unordered pairs in the testing data should also contribute to
the performance of output relative score, since good predictor
would ensure outputting similar scores for two elements in an
unordered pair.

Therefore, we propose a new relative AUC metric to address
these two shortcomings, where AUC is the abbreviation of

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 1, JANUARY 2019

0.42

0.36 0.06

0.40

0.19

the above images which are used in our user studies.

Area Under Curve. Let 7 be a threshold or tolerance for equal
scores, that is, if the score difference in a pair is smaller than 7,
we label this pair as an unordered pair; otherwise, we will
report it as an ordered pair with the corresponding order label.
In doing so, both the ordered and unordered pairs contribute to
the evaluation. Given this threshold scheme, precision-recall
curves can be drawn by varying the threshold 7. The area
under the curve is our relative AUC. We report the mean result
of 5 rounds cross validation.

3) Comparison With Baseline Solutions: In the absence of
representative systems with similar functions, we compare our
method with a number of baseline solutions, including the
low-level vision haze transmission estimation, relative SVM
with low-level features, and the use of CNN and RNN model
independently.

For low-level haze transmission estimation, we adopt [13]
to estimate the transmission map. Three measurement criteria
are tested: the mean, median and minimum values of the trans-
mission map as visibility score. In particular, Tang et al. [20]
studied different features related to haze. We compute all of
the feature maps resulting in a total of 13 maps. For each
feature map, we produce a 64D feature by constructing spatial
pyramid with 8 x 8 median-pooling. Then, we produced a
13 x 64 dimensional feature by concatenating features from
the 13 maps. We name it as the Tang feature.

For the relative SVM with low-level features, we com-
bine the haze feature (85D) [28] for atmosphere descrip-
tion and GIST features (512D) [29] for scene description.
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TABLE I

COMPARISON WITH VARIOUS BASELINE AND RELATIVE RANKING SOLU-
TIONS (Mean £ Variance IN %). “RELATIVE SVM (NONLINEAR
KERNEL)” REFERS TO THE USE OF SVM WITH NONLINEAR
KERNEL; WE TESTED 3 KERNELS, NAMELY, POLYNOMIAL,

TABLE II

COMPARISON WITH VARIOUS BASELINES UNDER THE METRIC
OF RELATIVE AUC (MEAN £ VARIANCE)

[[ accuracy |
RADIAL BASIS AND SIGMOID AND REPORT THE BEST ONE — —
(POLYNOMIAL KERNEL). DATA AUGMENTATION REFERS transmission estimation (mean) 347+ 1.1
TO THE USE OF DEHAZING FILTER TO SUBSTAN- transmission estimation (median) 32.8+£1.0
TIALLY INCREASE THE NUMBER OF ORDERING transmission estimation (min) 242+ 1.1
CONSTRAINTS. “RELATIVE CNN INITIALIZA- relative SVM + haze and scene feature 50.1 1.1
TION” MEANS EXTRACTING FEATURE ON relative SVM + feature of [25] 53.1+1.1
THE INITIALIZATION CNN NETWORK relative SVM + Tang feature 545+ 1.0
. [2] + haze and scene feature 51.2+1.0
— — [ accuracy | [6] + haze and scene feature 51.1+0.9
transmission estimation (mean) 7.1+ 1.4 overall back-propagation solution 68.2+ 1.0
transmission estimation (median) 69.5+1.2 . s
fransmission estimation (min) 6O L1 Ours (relative CNN initialization) 69.0+ 1.1
relative SVM + haze and scene feature 72.3+1.5 Ours (relative CNN) 741+1.1
relative SVM + color feature 704+£1.4 Ours (relative RNN model) 71.2+1.0
relative SVM + feature of [25] 722+ 1.6 Ours (without shortcuts connection) 772+1.1
relative SVM + Tang feature 73.1+14 Ours (without data augmentation) 75.7 £ 1.3
relative SVM (nonlinear kernel) + haze and scene feature 71.3+1.5 Ours (CNN-RNN model) 822 +1.1
[2] + haze and scene feature 70.6 1.4
[6] + haze and scene feature 1.7+ 1.2
overall back-propagation solution 771+£1.3
Ours (r(e)l‘fltiv(e ?NN igilt\iIaNﬁ)Zation) Sg'g i 13 only describes historical shift. When the RNN works in tandem
urs (relative . . . . .
Ours (relative RNN model) SNESR] with the CNN network, a performance boost is observed which
Ours (without shortcuts connection) 8T1E14 shows that the two modules are complementary and benefit
Ours (without data augmentation) 854+ 1.3 each other. We also observe the use of shortcuts connection
Ours (CNN-RNN model) 903+ 12 | can significantly outperform the trivial concatenation of CNN

We concatenate the two features to produce a 596D feature.
So the combined feature is supposed to capture both the haze
and scene properties at the same time.

In addition, a number of relative learning solvers are also
evaluated. The mainstream ranking learning solvers are sum-
marized and implemented in [30]. The solvers [26], [27]
in [30] were modified to use the 596D haze-scene feature.
We also test another naive weather related features, the color
histogram feature.

Finally, we also compare three baselines: (1) the use of CNN
only, (2) the use of RNN model only, and (3) combining CNN
and RNN feature without bridge connection.

The results are summarized in Tables I and II which show
that our method is better suited to visibility estimation. The
low-level transmission estimation method does not incorporate
adequate scene description ingredient. In relative SVM and
other ranking learning methods with combined haze and GIST
feature, the disadvantage is obvious: handcrafted features are
inadequate to describe atmospheric visibility for diversified
scenes. The pure CNN feature benefits our relative deep
learning framework, but the solution in the top layer is
less optimal and weak in modeling ranking. In comparison,
our framework is empowered by the data-driven CNN-RNN
features derived from the rich feature hierarchies inherent in
the training data, while in the top structure we metabolize
a stable ranking learning solver for relative SVM. As we can
see, without enriching or augmenting our training data with the
automatically generated ordering constraints, the performance
drops by about 5%, verifying that our training data enrichment
strategy provides more useful information. We observe that
using the RNN model alone is less effective. This is because it

and RNN features.

B. User Studies

We conducted our user studies which were participated by
environmental scientists to verify the effectiveness of our pro-
posed method on atmospheric visibility estimation. We invited
six environmental scientists (most have a relevant PhD degree)
working in reputable observatories around the world. They
have extensive experience in judging visibility from photos.
They did not get paid and participated in our user studies on a
voluntary basis, so we gratefully acknowledge their generous
help. We asked them to score our results on a 100-point
scale. The scoring instructions are: full score 100 indicates
that our visibility score exactly matches with their professional
judgment of the atmospheric visibility condition; a score
of 80 indicates our estimated visibility is highly faithful;
60 indicates that our visibility measurement can fairly reflect
the atmospheric visibility; O indicates that we did an awful job.
We randomly selected four images from our results to build
a testing set. The volunteering scientists were given a total
of 20 testing sets. Figure 7 shows the data and the Table III
tabulates the scores. The scores from environmental scientists
are all above 80, indicating that our results are highly faithful.
Our method also outperforms other baseline methods.

The limited user studies demonstrate that our method is
effective for visibility estimation.

C. Absolute Visibility Estimation

We evaluate the performance of our absolute visibility
estimation on our small sized dataset. We partition the
3,146 images into the training and testing datasets which
consist of respectively 60% and 40% of the dataset. We learned
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TABLE IIT
SCORING RESULTS BY 6 ENVIRONMENTAL SCIENTISTS. THE NUMBER BEFORE AND AFTER = ARE MEAN AND VARIANCE RESPECTIVELY

expert # 1 # 2 #3 # 4 #5 #6
transmission estimation (median) 64.9 £+ 6.45 67.7 £ 8.05 64.6 + 8.10 68.4+7.71 66.3 £7.11 69.3 £ 7.47
relative SVM + haze and scene feature 73.6 = 5.75 74.8 = 7.56 75.7T£7.33 76.9 £ 6.93 75.8 £ 8.28 72.8 £7.15
relative SVM + Tang feature 76.3 £ 5.60 75.1 £8.32 76.1 £7.44 75.2 £6.39 74.9£7.27 73.3 £8.83
overall back-propagation solution 84.5 +6.01 82.7+7.14 | 8.5£894 | 8.6+£7.35 | 82.5£8.31 83.7+ 7.64
Ours 874+6.12 | 84.7+£895 | 88.2+829 | 90.1+7.30 | 86.2+7.50 | 87.1 +8.18

TABLE IV

MEAN REGRESSION ERROR ON DIFFERENT METHODS. “ERROR”
INDICATES MEAN REGRESSION ERROR. “SOLVING EQ. 29 WITHOUT
RM” MEANS SOLVING EQ. 29 WITHOUT THE RELATIVE LEARNING
MODEL. “SOLVING EQ. 29 WITH NATURAL IMAGE MODEL”
MEANS SOLVING EQ. 29 BY FINE TUNING ON THE NATURAL
IMAGE MODEL (LEARNED ON IMAGENET) IN THE
NEURON NETWORK UPDATING STEP

| [ Frror |
SVR + haze and gist feature 0.57
Solving Eq. 30 without RM 0.62
Solving Eq. 30 with natural image model || 0.45
Ours 0.19

an absolute visibility regressor on the training dataset and
then performed testing with the testing data. We evaluate the
regression error by W_,(?’o‘, where y and y° are respectively
the regressed and ground truth visibility reading. We report
the mean regression error of all testing samples. Three baseline
methods are tested. First, we directly apply SVR on the haze
feature + gist feature. Second, we learned Eq. (29) without
fine tuning the learned relative model; rather we begin with a
random initialization. Third, we solve Eq. (29) by fine tuning
the neuron network on the learned natural image model in
ImageNet. The results are tabulated in Table IV. Figure 6
shows sample visibility regression results. The comparison
results show that our proposed solution outperforms the tested
baselines. The first baseline performs quite poorly due to the
fact that low-level feature fails to capture complex visibility.
For the second baseline, due to the limited training data, it is
difficult to fit the neuron network well with a large number
of parameters. We observe that fine tuning on the natural
image model is less effective since it does not encode visibility
information.

VI. CONCLUSION AND FUTURE WORK

We propose the relative CNN-RNN model, where the com-
plementary synergy of CNN and RNN modules, with the
former being “local-to-global” and the latter being “global-
to-local,” is effectively utilized. This results in good perfor-
mance in predicting relative visibility for a great variety of
situations. To enrich the training data set, we automatically
synthesize additional order constraints by employing a dehaze
filter. Empowered by a large-scale training data repository, the
CNN-RNN features are data-driven which benefit from the
rich feature hierarchies inherent in the RNN-CNN architecture.
This avoids the problem of handcrafted scene/haze features
which fall short of adequately accommodating high variety of

different outdoor scenes. Our relative model can be effectively
adapted in a small data scenario where absolute visibility data
are typically sparsely available. Our framework is scalable
to include more data which are arguably not difficult to
annotate since human and computer are better in relative
judgment when it comes to visibility measurement. The visi-
bility datasets will be released to accompany the paper in the
project website. While the paper focuses on learning relative
atmospheric visibility, since the input are images, we believe
the ideas and techniques developed in this paper can be applied
to other ranking applications that involve images. In the future
we are interested in applying this new relative CNN-RNN
framework in other relative attributes learning problems.
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